Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Eur J Clin Pharmacol ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483544

ABSTRACT

BACKGROUND AND OBJECTIVES: Despite being clinically utilized for the treatment of infections, the limited therapeutic range of polymyxin B (PMB), along with considerable interpatient variability in its pharmacokinetics and frequent occurrence of acute kidney injury, has significantly hindered its widespread utilization. Recent research on the population pharmacokinetics of PMB has provided valuable insights. This study aims to review relevant literature to establish a theoretical foundation for individualized clinical management. METHODS: Follow PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, Pop-PK studies of PMB were searched in PubMed and EMBASE database systems from the inception of the database until March 2023. RESULT: To date, a total of 22 population-based studies have been conducted, encompassing 756 subjects across six different countries. The recruited population in these studies consisted of critically infected individuals with multidrug-resistant bacteria, patients with varying renal functions, those with cystic fibrosis, kidney or lung transplant recipients, patients undergoing extracorporeal membrane oxygenation (ECMO) or continuous renal replacement therapy (CRRT), as well as individuals with obesity or pediatric populations. Among these studies, seven employed a one-compartmental model, with the range of typical clearance (CL) and volume (Vc) being 1.18-2.5L /h and 12.09-47.2 L, respectively. Fifteen studies employed a two-compartmental model, with the ranges of the clearance (CL) and volume of the central compartment (Vc), the volume of the peripheral compartment (Vp), and the intercompartment clearance (Q) were 1.27-8.65 L/h, 5.47-38.6 L, 4.52-174.69 L, and 1.34-24.3 L/h, respectively. Primary covariates identified in these studies included creatinine clearance and body weight, while other covariates considered were CRRT, albumin, age, and SOFA scores. Internal evaluation was conducted in 19 studies, with only one study being externally validated using an independent external dataset. CONCLUSION: We conclude that small sample sizes, lack of multicentre collaboration, and patient homogeneity are the primary reasons for the discrepancies in the results of the current studies. In addition, most of the studies limited in the internal evaluation, which confined the implementation of model-informed precision dosing strategies.

2.
Phys Imaging Radiat Oncol ; 29: 100562, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38463219

ABSTRACT

Background and purpose: Ultra-hypofractionated online adaptive magnetic resonance-guided radiotherapy (MRgRT) is promising for prostate cancer. However, the impact of online adaptation on target coverage and organ-at-risk (OAR) sparing at the level of accumulated dose has not yet been reported. Using deformable image registration (DIR)-based accumulation, we compared the delivered adapted dose with the simulated non-adapted dose. Materials and methods: Twenty-three prostate cancer patients treated at two clinics with 0.35 T magnetic resonance-guided linear accelerator (MR-linac) following the same treatment protocol (5 × 7.5 Gy with urethral sparing and daily adaptation) were included. The fraction MR images were deformably registered to the planning MR image. Both non-adapted and adapted fraction doses were accumulated with the corresponding vector fields. Two DIR approaches were implemented. PTV* (planning target volume minus urethra+2mm) D95%, CTV* (clinical target volume minus urethra) D98%, and OARs (urethra+2mm, bladder, and rectum) D0.2cc, were evaluated. Statistical significance was inferred from a two-tailed Wilcoxon signed-rank test (p < 0.05). Results: Normalized to the baseline, the accumulated PTV* D95% increased significantly by 2.7 % ([1.5, 4.3]%) through adaptation, and the CTV* D98% by 1.2 % ([0.1, 1.7]%). For the OARs after adaptation, accumulated bladder D0.2cc decreased by 0.4 % ([-1.2, 0.4]%), urethra+2mmD0.2cc by 0.8 % ([-1.6, -0.1]%), while rectum D0.2cc increased by 2.6 % ([1.2, 4.9]%). For all patients, rectum D0.2cc was still below the clinical constraint. Results of both DIR approaches differed on average by less than 0.2 %. Conclusions: Online adaptation in MRgRT improved target coverage and OARs sparing at the level of accumulated dose.

3.
Mol Med ; 30(1): 30, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395749

ABSTRACT

BACKGROUND: Sepsis is a systemic inflammatory response which is frequently associated with acute lung injury (ALI). Activating transcription factor 3 (ATF3) promotes M2 polarization, however, the biological effects of ATF3 on macrophage polarization in sepsis remain undefined. METHODS: LPS-stimulated macrophages and a mouse model of cecal ligation and puncture (CLP)-induced sepsis were generated as in vitro and in vivo models, respectively. qRT-PCR and western blot were used to detect the expression of ATF3, ILF3, NEAT1 and other markers. The phenotypes of macrophages were monitored by flow cytometry, and cytokine secretion was measured by ELISA assay. The association between ILF3 and NEAT1 was validated by RIP and RNA pull-down assays. RNA stability assay was employed to assess NEAT1 stability. Bioinformatic analysis, luciferase reporter and ChIP assays were used to study the interaction between ATF3 and ILF3 promoter. Histological changes of lung tissues were assessed by H&E and IHC analysis. Apoptosis in lungs was monitored by TUNEL assay. RESULTS: ATF3 was downregulated, but ILF3 and NEAT1 were upregulated in PBMCs of septic patients, as well as in LPS-stimulated RAW264.7 cells. Overexpression of ATF3 or silencing of ILF3 promoted M2 polarization of RAW264.7 cells via regulating NEAT1. Mechanistically, ILF3 was required for the stabilization of NEAT1 through direct interaction, and ATF3 was a transcriptional repressor of ILF3. ATF3 facilitated M2 polarization in LPS-stimulated macrophages and CLP-induced septic lung injury via ILF3/NEAT1 axis. CONCLUSION: ATF3 triggers M2 macrophage polarization to protect against the inflammatory injury of sepsis through ILF3/NEAT1 axis.


Subject(s)
Activating Transcription Factor 3 , Macrophages , RNA, Long Noncoding , Sepsis , Animals , Humans , Mice , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Lipopolysaccharides , Macrophages/metabolism , Nuclear Factor 90 Proteins/genetics , Nuclear Factor 90 Proteins/metabolism , RAW 264.7 Cells , Sepsis/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
4.
J Infect Dis ; 229(2): 522-534, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-37647879

ABSTRACT

BACKGROUND: Patients with sepsis resulting in acute lung injury (ALI) usually have increased mortality. Ferroptosis is a vital regulator in sepsis-induced ALI. Exploring the association of ferroptosis and sepsis-induced ALI is crucial for the management of sepsis-induced ALI. METHODS: Whole blood was collected from sepsis patients. Mice were treated with cecal ligation and puncture (CLP) to model sepsis. Primary murine pulmonary microvascular endothelial cells were treated with lipopolysaccharide as a cell model. Ferroptosis was evaluated by analyzing levels of iron, malonaldehyde, glutathione, nonheme iron, ferroportin, ferritin, and GPX4. Hematoxylin and eosin and Masson's trichrome staining were applied to examine lung injury and collagen deposition. Cell apoptosis was analyzed by caspase-3 activity and TUNEL assays. Gene regulatory relationship was verified using RNA pull-down and immunoprecipitation assays. RESULTS: CircEXOC5 was highly expressed in sepsis patients and CLP-treated mice, in which knockdown alleviated CLP-induced pulmonary inflammation and injury, and ferroptosis. CircEXOC5 recruited IGF2BP2 to degrade ATF3 mRNA. The demethylase ALKBH5 was responsible for circEXOC5 upregulation through demethylation. CircEXOC5 silencing significantly improved sepsis-induced ALI and survival rate of mice by downregulating ATF3. CONCLUSIONS: ALKBH5-mediated upregulation of circEXOC5 exacerbates sepsis-induced ALI by facilitating ferroptosis through IGF2BP2 recruitment to degrade ATF3 mRNA.


Subject(s)
Acute Lung Injury , Ferroptosis , Sepsis , Humans , Mice , Animals , Endothelial Cells/metabolism , Acute Lung Injury/etiology , Lung/metabolism , Sepsis/metabolism , Iron/metabolism , RNA, Messenger/metabolism , Lipopolysaccharides , RNA-Binding Proteins/metabolism , Activating Transcription Factor 3/metabolism
5.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2257-2267, 2024 04.
Article in English | MEDLINE | ID: mdl-37812240

ABSTRACT

Ursolic acid (UA), a pentacyclic triterpenoid, exhibits various pharmacological actions, such as anti-inflammation, anti-tumor, anti-diabetes, heart protection, and liver protection. However, the role of nuclear factor E2-related factor 2 (NRF2)-mediated regulation of uridine diphosphate glucuronosyltransferase (UGT2B7) and bile salt export pump (BSEP)/multidrug resistance-associated protein 2 (MRP2) in UA against cholestatic liver injury has not been cleared. The purpose of this study is to explore the effect of UA on cholestatic liver injury and its potential mechanism. The results of the liver pathology sections and blood biochemical indices demonstrated that UA significantly attenuated the cholestatic liver injury induced by alpha-naphthylisothiocyanate (ANIT) in a dose-dependent manner. The mRNA and protein levels of UGT2B7 and BSEP/MRP2 were remarkably increased in the liver of ANIT rats and HepG2 cells pretreated with UA, but this activation was suppressed with NRF2 silenced. In conclusion, our findings demonstrate that UA prevents cholestasis, which may be associated with NRF2-mediated regulation of UGT2B7, BSEP/MRP2.


Subject(s)
Cholestasis , Multidrug Resistance-Associated Protein 2 , Rats , Animals , Ursolic Acid , NF-E2-Related Factor 2/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Cholestasis/drug therapy , Liver
6.
Virchows Arch ; 484(1): 61-69, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37924345

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) is a rare disease with high mortality. Liver involvement is common (based on elevated liver function tests) with most patients demonstrating acute hepatitis. Liver biopsies are frequently obtained in the setting of suspected HLH for the purpose of identification of erythrophagocytosis, and if present, this finding is thought to suggest or support the diagnosis of HLH. However, there are problems with this approach; in particular, we do not know whether this finding is reproducible or whether it is specific to HLH. Therefore, we conducted a multi-institutional study in which experienced liver pathologists reviewed images taken from liver biopsies from patients with normal liver, acute hepatitis, possible HLH, and clinical HLH to determine if there was agreement about the presence or absence of erythrophagocytosis, and to ascertain whether the finding corresponds to a clinical diagnosis of HLH. Twelve liver pathologists reviewed 141 images in isolation (i.e., no clinical information or diagnosis provided). These came from 32 patients (five normal, 17 acute hepatitis, six HLH, four possible HLH). The pathologists classified each image as negative, equivocal, or positive for erythrophagocytosis. Kappa was .08 (no agreement) for case-level and 0.1 for image-level (1.4% agreement, based on two images which were universally considered negative). There was no difference in the proportion of pathologists who diagnosed erythrophagocytosis among those with different diagnoses at case or image-level (p = 0.82 and p = 0.82, respectively). Thus, erythrophagocytosis is an entirely unreliable histologic parameter in liver, as it is irreproducible and not demonstrably associated with a clinical disease (namely, HLH). Unless and until more reliable guidelines can be established, pathologists should refrain from commenting on the presence or absence of erythrophagocytosis in liver biopsy.


Subject(s)
Hepatitis , Lymphohistiocytosis, Hemophagocytic , Humans , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/complications , Lymphohistiocytosis, Hemophagocytic/pathology , Acute Disease , Biopsy
7.
Front Cardiovasc Med ; 10: 1237103, 2023.
Article in English | MEDLINE | ID: mdl-38034370

ABSTRACT

Background: Only a few studies that investigated dietary intakes of folate, vitamin B6, and vitamin B12 in relation to cariovascular disease (CVD). This study aimed to assess the association of dietary folate, vitamin B6, and vitamin B12 with CVD in the United States population. Methods: A cross-sectional analysis of 65,322 adults aged ≥ 20 years who participated in the Third National Health and Nutrition Examination Survey (NHANES III) and NHANES 1999-2018. Before 2003, dietary intake data were assessed using a 24-hour dietary call, and two 24-hour dietary calls were used during 2003 and 2018. Odds ratios and 95% confidence intervals (CIs) for CVD associated with dietary folate, vitamin B6, and vitamin B12 were estimated using multivariate logistic regression models. Results: Dietary vitamin B6 intake were inversely associated with the odds of CVD. In males, the multivariable OR for the highest vs. lowest quartiles of vitamin B6 was 0.77 (95%CI: 0.61-0.97, Ptrend = 0.013) for the odds of CVD. In females, the adjusted OR for the highest quartile of vitamin B6 compared with the lowest quartile was 0.73 (95%CI: 0.56-0.95, Ptrend = 0.038) for the odds of CVD. No significant association was observed between dietary folate and vitamin B12 intakes and the odds of CVD. Conclusions: Our findings indicate that higher intake of dietary vitamin B6 may be associated with lower prevalence of CVD, suggesting that dietary vitamin B6 has major public health implications in the prevention of CVD in the United States population.

8.
J Med Chem ; 66(10): 6889-6904, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37161996

ABSTRACT

Prostate-specific membrane antigen (PSMA) overexpressed on prostate cancer (PCa) cells is a satisfactory theranostic target in PCa. To seek novel non-glutamate-urea-based PSMA inhibitors by the strategy of bioisosterism, 10 ligands were designed, synthesized, and characterized. Among them, ligands 17, 18, and 21-24 bearing the squaramic acid moiety proved to be potent PSMA inhibitors, with Ki values ranging from 0.40 to 2.49 nM, which are comparable or higher in inhibitory potency compared to previously reported glutamate-urea-based inhibitors. Docking studies of 15, 17, and 19 were carried out to explore their binding mode in the active site of PSMA. Two near-infrared (NIR) probes, 23 (λEM = 650 nm) and 24 (λEM = 1088 nm), displayed favorable in vivo NIR imaging and successful NIR-II image-guided tumor resection surgery in PSMA-positive tumor-bearing mice, which demonstrated the effectiveness of these new squaramic acid-based inhibitors.


Subject(s)
Prostate , Prostatic Neoplasms , Humans , Male , Animals , Mice , Prostate/metabolism , Prostate/pathology , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Prostatic Neoplasms/pathology , Urea/pharmacology , Cell Line, Tumor
9.
Adv Mater ; 35(36): e2303488, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37201909

ABSTRACT

The electronic structure of transition metal complexes can be modulated by replacing partial ion of complexes to obtain tuned intrinsic oxygen reduction reaction (ORR) or oxygen evolution reaction (OER) electrocatalytic activity. However, the anion-modulated transition metal complexes ORR activity of is still unsatisfactory, and the construction of hetero-anionic structure remains challenging. Herein, an atomic doping strategy is presented to prepare the CuCo2 O4-x Sx /NC-2 (CCSO/NC-2) as electrocatalysts, the structrual characterization results favorably demonstrate the partial substitution of S atoms for O in CCSO/NC-2, which shows excellent catalytic performance and durability for OER and ORR in 0.1 m KOH. In addition, the catalyst assembled Zinc-air battery with an open circuit potential of 1.43 V maintains performance after 300 h of cyclic stability. Theoretical calculations and differential charges illustrate that S doping optimizes the reaction kinetics and promotes electron redistribution. The superior performance of CCSO/NC-2 catalysis is mainly due to its unique S modulation of the electronic structure of the main body. The introduction of S promotes CoO covalency and constructs a fast electron transport channel, thus optimizing the adsorption degree of active site Co to the reaction intermediates.

10.
Nutr Res ; 112: 46-54, 2023 04.
Article in English | MEDLINE | ID: mdl-36965328

ABSTRACT

We hypothesized that the prevalence of hypertension is related to B-vitamin intake in the general population, but it has not been sufficiently studied. This study aimed to investigate the intakes of dietary folate, vitamin B6, and vitamin B12 concerning hypertension in US adults. A total of 55 569 adults from National Health and Nutrition Examination Survey III and 1999-2014 were included in this study. Nutrient intake was collected from subjects through one or two 24-hour dietary reviews. Multiple logistic regression models were used to examine the relationship between these nutrient intakes and hypertension. Among male participants, dietary folate, vitamin B6, and vitamin B12 intakes were significantly and negatively associated with the prevalence of hypertension, with multivariate-adjusted odds ratios (ORs) of 0.61 (95% confidence interval [CI], 0.55-0.68), 0.65 (95% CI, 0.59-0.72), and 0.84 (95% CI, 0.75-0.95) for the highest quartile group compared with the lowest group. Results were similar for female participants, with multivariate-adjusted ORs of 0.63 (95% CI, 0.57-0.71), 0.60 (95% CI, 0.53-0.66), and 0.87 (95% CI, 0.77-0.98) for the highest quartile group. Moreover, there was a linear trend (Ptrend < .001) in both men and women that the prevalence of hypertension tended to decrease with increased intake of folate, vitamin B6, and vitamin B12; however, the decreases above the third quartile were negligible. Dietary folate, vitamin B6, and vitamin B12 were significantly associated negatively with hypertension, indicating that these nutrients might have a protective effect against hypertension in United States adults.


Subject(s)
Folic Acid , Hypertension , Vitamin B Complex , Adult , Female , Humans , Male , Folic Acid/administration & dosage , Nutrition Surveys , Prevalence , Pyridoxine , Vitamin B 12/administration & dosage , Vitamin B 6/administration & dosage , Hypertension/epidemiology , Adolescent , Middle Aged
11.
Radiother Oncol ; 182: 109555, 2023 05.
Article in English | MEDLINE | ID: mdl-36813166

ABSTRACT

BACKGROUND AND PURPOSE: Magnetic resonance imaging guided radiotherapy (MRgRT) with deformable multileaf collimator (MLC) tracking would allow to tackle both rigid displacement and tumor deformation without prolonging treatment. However, the system latency must be accounted for by predicting future tumor contours in real-time. We compared the performance of three artificial intelligence (AI) algorithms based on long short-term memory (LSTM) modules for the prediction of 2D-contours 500ms into the future. MATERIALS AND METHODS: Models were trained (52 patients, 3.1h of motion), validated (18 patients, 0.6h) and tested (18 patients, 1.1h) with cine MRs from patients treated at one institution. Additionally, we used three patients (2.9h) treated at another institution as second testing set. We implemented 1) a classical LSTM network (LSTM-shift) predicting tumor centroid positions in superior-inferior and anterior-posterior direction which are used to shift the last observed tumor contour. The LSTM-shift model was optimized both in an offline and online fashion. We also implemented 2) a convolutional LSTM model (ConvLSTM) to directly predict future tumor contours and 3) a convolutional LSTM combined with spatial transformer layers (ConvLSTM-STL) to predict displacement fields used to warp the last tumor contour. RESULTS: The online LSTM-shift model was found to perform slightly better than the offline LSTM-shift and significantly better than the ConvLSTM and ConvLSTM-STL. It achieved a 50% Hausdorff distance of 1.2mm and 1.0mm for the two testing sets, respectively. Larger motion ranges were found to lead to more substantial performance differences across the models. CONCLUSION: LSTM networks predicting future centroids and shifting the last tumor contour are the most suitable for tumor contour prediction. The obtained accuracy would allow to reduce residual tracking errors during MRgRT with deformable MLC-tracking.


Subject(s)
Artificial Intelligence , Neoplasms , Humans , Motion , Algorithms , Radiotherapy Planning, Computer-Assisted/methods
12.
Strahlenther Onkol ; 199(6): 544-553, 2023 06.
Article in English | MEDLINE | ID: mdl-36151215

ABSTRACT

PURPOSE: This study aimed to evaluate the intrafractional prostate motion captured during gated magnetic resonance imaging (MRI)-guided online adaptive radiotherapy for prostate cancer and analyze its impact on the delivered dose as well as the effect of gating. METHODS: Sagittal 2D cine-MRI scans were acquired at 4 Hz during treatment at a ViewRay MRIdian (ViewRay Inc., Oakwood Village, OH, USA) MR linac. Prostate shifts in anterior-posterior (AP) and superior-inferior (SI) directions were extracted separately. Using the static dose cloud approximation, the planned fractional dose was shifted according to the 2D gated motion (residual motion in gating window) to estimate the delivered dose by superimposing and averaging the shifted dose volumes. The dose of a hypothetical non-gated delivery was reconstructed similarly using the non-gated motion. For the clinical target volume (CTV), rectum, and bladder, dose-volume histogram parameters of the planned and reconstructed doses were compared. RESULTS: In total, 174 fractions (15.7 h of cine-MRI) from 10 patients were evaluated. The average (±1 σ) non-gated prostate motion was 0.6 ± 1.0 mm in the AP and 0.0 ± 0.6 mm in the SI direction with respect to the centroid position of the gating boundary. 95% of the shifts were within [-3.5, 2.7] mm in the AP and [-2.9, 3.2] mm in the SI direction. For the gated treatment and averaged over all fractions, CTV D98% decreased by less than 2% for all patients. The rectum and the bladder D2% increased by less than 3% and 0.5%, respectively. Doses reconstructed for gated and non-gated delivery were similar for most fractions. CONCLUSION: A pipeline for extraction of prostate motion during gated MRI-guided radiotherapy based on 2D cine-MRI was implemented. The 2D motion data enabled an approximate estimation of the delivered dose. For the majority of fractions, the benefit of gating was negligible, and clinical dosimetric constraints were met, indicating safety of the currently adopted gated MRI-guided treatment workflow.


Subject(s)
Prostatic Neoplasms , Radiotherapy, Intensity-Modulated , Male , Humans , Prostate/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Motion , Magnetic Resonance Imaging , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage
13.
Mol Cell Biochem ; 478(4): 743-754, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36074295

ABSTRACT

Acute lung injury (ALI) caused by sepsis is characterized by a destructive high inflammatory response in lungs, which is the ultimate cause of high mortality to patients diagnosed with sepsis. The objective of the present study is to explore the effect and related mechanisms of circEXOC5 on pyroptosis in septic ALI. Sepsis ALI mouse model was induced and established by CLP induction and sepsis MPVEC cell model by LPS. HE staining was used to detect lung tissue pathological changes. ELISA, flow cytometry, and Western blot were utilized to evaluate the release of inflammatory cytokines and cell pyroptosis, and RIP was applied to verify the binding relationship between EZH2 and circEXOC5 or Nrf2. Finally, the interaction between CircEXOC5 and EZH2, H3k27me3, and Nrf2 promoter regions was clarified using ChIP. CircEXOC5 levels were notably ascended in the lung tissues of septic ALI mice. And silencing circEXOC5 inhibited cell pyroptosis and the release of inflammatory cytokines in MPVEC stimulated by LPS. In addition, RIP and ChIP indicated that Nrf2 expression in MPVECs cells could be inhibited by circEXOC5 via recruiting EZH2. In addition, ML385 (a specific inhibitor of Nrf2) reversed the efficacy of Knockdown of circEXOC5 on the Inhibition of pyroptosis and inflammation of MPVEC cells stimulated by LPS. These results indicated that CircEXOC5 could promote cell pyroptosis through epigenetic inhibition of Nrf2 in septic ALI.


Subject(s)
Acute Lung Injury , Sepsis , Mice , Animals , Pyroptosis , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Lung/pathology , Cytokines/metabolism , Sepsis/metabolism , Epigenesis, Genetic , Mice, Inbred C57BL
14.
Immunobiology ; 227(4): 152219, 2022 07.
Article in English | MEDLINE | ID: mdl-35709678

ABSTRACT

BACKGROUND: Sepsis causes severe acute lung injury (ALI). Circular RNA is involved in the regulation of sepsis-related ALI progression. The regulation mechanism of circEXOC5 in sepsis-induced ALI is still unclear. Whether circEXOC5 is involved in the regulation of ferroptosis remains to be explored. METHODS: We constructed a mouse model of sepsis through cecal ligation and puncture (CLP). LPS induced mouse lung microvascular endothelial cells (MPVECs) to construct a sepsis cell model. The expression of circEXOC5 in the sepsis model was detected by qPCR. The extent of lung injury in mice was analyzed by HE staining. The contents of GSH/GSSG, iron, MDA and 4HNE in mice lung tissues and cells were detected by the kit. And further the ROS content was detected in the cells. Finally, the binding relationship between circEXOC5 and PTBP1 was detected by RIP and RNA pulldown. RESULTS: Our results showed that the circEXOC5 expression was significantly increased in the in vivo and in vitro models of sepsis. And after inhibiting circEXOC5, it improved the lung injury of septic mice. It was confirmed in cell models that ROS levels and ferroptosis in cells were reduced after knocking down circEXOC5. In addition, the expressions of ACSL4 and Gpx4 proteins were regulated by the level of circEXOC5. Finally, we also found that circEXOC5 had a direct binding relationship with PTBP1. CONCLUSION: Our study found that the expression of cell ferroptosis and circEXOC5 increased in ALI induced by sepsis, and circEXOC5 aggravated ferroptosis in septic cells by regulating the PTBP1/ACSL4 axis.


Subject(s)
Acute Lung Injury , Ferroptosis , Sepsis , Acute Lung Injury/genetics , Animals , Coenzyme A Ligases/metabolism , Endothelial Cells/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Lung/metabolism , Mice , Mice, Inbred C57BL , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , RNA Stability , Reactive Oxygen Species/metabolism , Sepsis/complications
15.
Phys Med Biol ; 67(9)2022 04 19.
Article in English | MEDLINE | ID: mdl-35325880

ABSTRACT

Objective.Gated beam delivery is the current clinical practice for respiratory motion compensation in MR-guided radiotherapy, and further research is ongoing to implement tracking. To manage intra-fractional motion using multileaf collimator tracking the total system latency needs to be accounted for in real-time. In this study, long short-term memory (LSTM) networks were optimized for the prediction of superior-inferior tumor centroid positions extracted from clinically acquired 2D cine MRIs.Approach.We used 88 patients treated at the University Hospital of the LMU Munich for training and validation (70 patients, 13.1 h), and for testing (18 patients, 3.0 h). Three patients treated at Fondazione Policlinico Universitario Agostino Gemelli were used as a second testing set (1.5 h). The performance of the LSTMs in terms of root mean square error (RMSE) was compared to baseline linear regression (LR) models for forecasted time spans of 250 ms, 500 ms and 750 ms. Both the LSTM and the LR were trained with offline (offlineLSTM andofflineLR) and online schemes (offline+onlineLSTM andonlineLR), the latter to allow for continuous adaptation to recent respiratory patterns.Main results.We found theoffline+onlineLSTM to perform best for all investigated forecasts. Specifically, when predicting 500 ms ahead it achieved a mean RMSE of 1.20 mm and 1.00 mm, while the best performing LR model achieved a mean RMSE of 1.42 mm and 1.22 mm for the LMU and Gemelli testing set, respectively.Significance.This indicates that LSTM networks have potential as respiratory motion predictors and that continuous online re-optimization can enhance their performance.


Subject(s)
Lung , Neoplasms , Humans , Linear Models , Motion , Neoplasms/radiotherapy
16.
J Comput Chem ; 43(13): 906-916, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35324017

ABSTRACT

The human Son of Sevenless (SOS) activates the signal-transduction protein Ras by forming the complex SOS·Ras and accelerating the guanosine triphosphate (GTP) exchange in Ras. Inhibition of SOS·Ras could regulate the function of Ras in cells and has emerged as an effective strategy for battling Ras related cancers. A key factor to the success of this approach is to understand the conformational change of Ras during the GTP exchange process. In this study, we perform an extensive molecular dynamics simulation to characterize the specific conformations of Ras without and with guanine nucleotide exchange factors (GEFs) of SOS, especially for the substates of State 1 of HRasGTP∙Mg2+ . The potent binding pockets on the surfaces of the RasGDP∙Mg2+ , the S1.1 and S1.2 substates in State 1 of RasGTP∙Mg2+ and the ternary complexes with SOS are predicted, including the binding sites of other domains of SOS. These findings help to obtain a more thorough understanding of Ras functions in the GTP cycling process and provide a structural foundation for future drug design.


Subject(s)
Guanine Nucleotide Exchange Factors , Proto-Oncogene Proteins p21(ras) , Binding Sites , Guanine Nucleotide Exchange Factors/metabolism , Guanosine Triphosphate , Humans , Molecular Conformation , Proto-Oncogene Proteins p21(ras)/metabolism
17.
Radiat Oncol ; 17(1): 43, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35209922

ABSTRACT

INTRODUCTION: Online MR-guided radiotherapy (MRgRT) is a relatively novel advancement in the field of radiation oncology, ensuring superior soft-tissue visualisation, allowing for online plan adaptation to anatomical and functional interfractional changes and improved motion management. Platinum-based chemoradiation followed by durvalumab is the recommended treatment for stage IIB(N1)/III NSCLC. However, this is only the case for patients with favourable risk factors and sufficient pulmonary function and reserve. METHODS: Herein, we present a technical report on tumour motion and breathing curve analyses of the first patient with node-positive stage IIB NSCLC and severely compromised pulmonary function and reserve [total lung capacity (TLC) 8.78L/132% predicted, residual volume (RV) 6.35L/271% predicted, vital capacity (VC) max 2.43L/58% predicted, FEV1 1.19L/38% predicted, DLCO-SB corrected for hemoglobin 2.76 mmol/min/kPa/30% predicted] treated in a prospective observational study with moderately hypofractionated MRgRT to a total dose of 48.0 Gy/16 daily fractions on the MRIdian system (Viewray Inc, Oakwood, USA). RESULTS: Radiotherapy was well tolerated with no relevant toxicity. First follow-up imaging at 3 months post-radiotherapy showed a partial remission. The distinctive features of this case are the patient's severely compromised pulmonary function and the first online MR-guided accelerated hypofractionated radiotherapy treatment for primary node-positive NSCLC. CONCLUSIONS: This technical report describes the first patient treated in a prospective observational study evaluating the feasibility of this relatively novel technology in stage IIB(N1)/III disease, proposing a clinical pathway for the management of high-risk patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/physiopathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Critical Pathways , Lung Neoplasms/physiopathology , Lung Neoplasms/radiotherapy , Lung/physiopathology , Magnetic Resonance Imaging , Radiotherapy, Image-Guided , Carcinoma, Non-Small-Cell Lung/secondary , Humans , Lung Neoplasms/pathology , Lymphatic Metastasis , Male , Middle Aged , Prospective Studies , Risk Assessment
18.
Phytomedicine ; 92: 153726, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34536821

ABSTRACT

BACKGROUND: Isomeric ursolic acid (UA) and oleanolic acid (OA) compounds have recently garnered great attention due to their biological effects. Previously, it had been shown that UA and OA can exert important pharmacological action via the protein kinase C (PKC) and nuclear factor-κB (NF-κB) signaling, and that they can induce the expression of UDP-glucuronosyltransferase 1A1 (UGT1A1) in HepG2 cells. This study aims to investigate the role of PKC/NF-κB signaling in regulating the expression of UGT1A1 and examine how UA and OA induce UGT1A1 based on this signaling pathway. METHODS: HepG2 cells, hp65-overexpressed HepG2 cell and lentivirus-hp65-shRNA silenced HepG2 cells were stimulated with PKC/NF-κB specific agonists and inhibitors for 24 h in the presence or absence of UA and OA. The expression of UGT1A1, PKC, and NF-κB were determined by qRT-PCR, western blot, and dual-luciferase reporter gene assays. RESULTS: PKC/NF-κB activation downregulates UGT1A1 expression. This effect is countered by UA and OA treatment. Phorbol 12-myristate 13-acetate (PMA) and lipopolysaccharide (LPS), the agonists of PKC and NF-κB signaling, respectively, significantly inhibit hp65-mediated UGT1A1 luciferase activity. UA, OA, and the PKC/NF-κB inhibitors suppress this effect. PMA and LPS do not affect UGT1A1 activity in p65-silenced HepG2 cells; however, UA and OA mildly influence UGT1A1 expression in these cells. CONCLUSION: The activation of PKC/NF-κB signaling can significantly downregulate UGT1A1 expression. By inhibiting the PKC/NF-κB signaling pathway, UA and OA promote UGT1A1 expression in HepG2 cells.


Subject(s)
Oleanolic Acid , Glucuronosyltransferase , NF-kappa B/metabolism , Oleanolic Acid/pharmacology , Protein Kinase C/metabolism , Signal Transduction , Triterpenes , Up-Regulation , Ursolic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...